§ 16. Клеточный цикл. Репликация ДНК

Клеточный цикл. Все новые клетки образуются путем деления уже существующих. Этот принцип, как уже отмечалось, сформулировал Р. Вирхов еще в середине XIX в. Деление клеток обеспечивает непрерывность существования жизни на нашей планете. Именно благодаря ему осуществляются различные способы бесполого и полового размножения организмов. В основе процессов роста, регенерации и индивидуального развития многоклеточных организмов также лежит деление клеток.

Период существования клетки от момента ее образования из материнской клетки до собственного деления (включая это деление) или гибели называется клеточным циклом.

Продолжительность клеточного цикла у разных организмов и различных клеток в составе одного организма варьирует. Так, у бактерий в благоприятных условиях он длится примерно 20 мин. Короткие клеточные циклы (30—60 мин) характерны для бластомеров рыб и земноводных на этапе дробления, в то время как у млекопитающих промежуток времени между делениями бластомеров может достигать 10 ч и более. У взрослых мышей клетки кишечного эпителия делятся каждые 11—22 ч, а роговицы глаза — приблизительно один раз в трое суток. Для регулярно делящихся клеток многоклеточных организмов длительность клеточного цикла обычно составляет 12—36 ч.

Клеточный цикл состоит из интерфазы и деления клетки (рис. 16.1). Интерфаза — это часть клеточного цикла между двумя последовательными делениями. Как правило, она занимает больше времени, чем само деление. Рассмотрим основные периоды интерфазы на примере эукариотической клетки.

Пресинтетический, или G1-период (от англ. gap — промежуток), начинается с момента образования новой клетки в результате деления материнской. Обычно это самый длительный период интерфазы и клеточного цикла в целом. В течение G1-периода молодая клетка интенсивно растет, в ней увеличивается количество органоидов и синтезируются различные соединения, необходимые для протекания процессов жизнедеятельности. В том числе образуются вещества, которые будут нужны для последующего удвоения молекул ДНК.

Вы уже знаете, что набор хромосом обозначают как n: например, 1n  — гаплоидный набор, 2n — диплоидный. Набор молекул ДНК в клетках принято записывать с помощью буквы с. Из § 14 вам известно, что каждая хроматида содержит одну молекулу ДНК, т. е. количество молекул ДНК и хроматид в составе хромосом всегда совпадает. Таким образом, записи типа 1с, 2с, 4с отражают содержание в клетках не только молекул ДНК, но и соответствующих хроматид.

В пресинтетическом периоде каждая хромосома состоит из одной хроматиды. Следовательно, в G1-периоде число хромосом (n) и хроматид (с) в клетке одинаковое. Набор хромосом и хроматид диплоидной клетки в G1-периоде клеточного цикла можно выразить записью 2n2c.

В синтетическом, или S-периоде (от англ. synthesis — синтез), происходит удвоение молекул ДНК — репликация, а также удвоение центриолей клеточного центра (в тех клетках, где он имеется). После завершения репликации каждая хромосома состоит уже из двух идентичных сестринских хроматид, которые соединены друг с другом в области центромеры. Количество хроматид в каждой паре гомологичных хромосом становится равным четырем. Таким образом, набор хромосом и хроматид диплоидной клетки в конце S-периода (т. е. после репликации) выражается записью 2n4c.

Постсинтетический, или G2-период, продолжается от окончания синтеза ДНК (репликации) до начала деления клетки. В это время клетка активно запасает энергию и синтезирует белки для предстоящего деления (например, белок тубулин для построения микротрубочек, образующих впоследствии веретено деления). В течение всего G2-периода набор хромосом и хроматид в клетке остается неизменным — 2n4c.

Итак, интерфаза обычно включает три периода: пресинтетический (G1), синтетический (S) и постсинтетический (G2). На протяжении всей интерфазы хромосомы не спирализованы. Они располагаются в ядре клетки в виде хроматина.

После завершения интерфазы начинается деление клетки. Основным способом деления клеток эукариот является митоз, поэтому данный этап клеточного цикла обозначают как М-период. При митозе происходит спирализация хроматина. Это приводит к формированию компактных двухроматидных хромосом. После этого сестринские хроматиды каждой хромосомы отделяются друг от друга и затем попадают в разные дочерние клетки. Значит, дочерние клетки, образовавшиеся в результате митоза и вступающие в новый клеточный цикл, имеют набор 2n2c.

Обобщенная информация об основных периодах клеточного цикла представлена в таблице 16.1.

Таблица 16.1. Основные периоды клеточного цикла

Период

Содержание наследственного материала в диплоидной клетке

Краткая характеристика

Интерфаза

Пресинтетический (G1)

2n2c

Рост клетки, образование органоидов, подготовка к репликации

Синтетический (S)

2n2c (в начале) → 2n4c (в конце)

Репликация ДНК, удвоение центриолей клеточного центра

Постсинтетический (G2)

2n4c

Завершение подготовки к делению

Митоз (М)

2n4c (в материнской клетке) → 2n2c (в каждой дочерней клетке)

Деление клетки на две дочерние

Некоторые клетки многоклеточных организмов, образовавшиеся при митозе, проходят далее G1-, S- и G2-периоды интерфазы и снова вступают в митоз. Это характерно, например, для клеток покровных эпителиев (росткового слоя эпидермиса кожи, эпителия желудочно-кишечного тракта и др.), красного костного мозга, образовательных тканей растений.

В  отличие от них многие клетки после прохождения части G1-периода вступают в так называемый период покоя, или G0-период. Клетки, находящиеся в G0-периоде, выполняют свои функции в организме, однако в них не происходит подготовка к репликации. Это свойственно, прежде всего, высокоспециализированным клеткам — нейронам, клеткам сердечной мышцы, хрусталика глаза и др. Такие клетки, как правило, навсегда утрачивают способность к делению.

Однако некоторые клетки, пребывающие в G0-периоде (например, клетки печени, эндокринных желез, лейкоциты), сохраняют способность к выходу из периода покоя, продолжению клеточного цикла и последующему делению. Такое явление наблюдается, например, при повреждении органа, в состав которого данные клетки входят.

*Прохождение клетками определенных этапов клеточного цикла регулируется целым рядом механизмов. На протекание цикла влияют как внеклеточные сигналы (для одноклеточных организмов это действие факторов внешней среды, для многоклеточных — главным образом БАВ: гормоны, цитокины и др.), так и внутриклеточные. Важную роль в осуществлении контроля клеточного цикла играют белки циклины. Содержание тех или иных циклинов в клетках закономерно изменяется по мере прохождения определенных периодов цикла. Нарушение механизмов регуляции клеточного цикла может приводить к неконтролируемому размножению клеток, что является причиной образования опухолей.

В клеточном цикле существуют так называемые контрольные точки. Если клетка проходит такую точку, она продолжает «движение» по клеточному циклу. Если же какие-либо причины мешают клетке пройти через контрольную точку, то клеточный цикл останавливается. Следующей фазы цикла не наступает до устранения препятствий, которые не позволили клетке пройти контрольную точку.

Известны как минимум четыре контрольные точки клеточного цикла. Так, в конце G1-периода происходит проверка ДНК на наличие повреждений перед вступлением в S-период. При непрохождении этой точки, как правило, запускается процесс устранения повреждений — репарация ДНК (от лат. reparatio — восстановление). Следующий контроль осуществляется в конце S-периода — проверяется полнота репликации ДНК. В G2-периоде ДНК снова проверяется на наличие повреждений и завершенность репликации. Наконец в ходе митоза осуществляется контроль прикрепления ко всем хромосомам нитей веретена деления.*