§ 27. Фотоэффект. Экспериментальные законы внешнего фотоэффекта. Квантовая гипотеза Планка

Изучение взаимодействия света с веществом привело к открытию эффектов, которые позволили сделать важный шаг к пониманию природы света. В дальнейшем использование этих эффектов позволило создать новое поколение электронных приборов и устройств. Какие же основные закономерности взаимодействия света с веществом?

Сила тока  I — скалярная физическая величина, равная отношению заряда Δq, прошедшего за промежуток времени  Δt через поперечное сечение проводника,  к этому промежутку: 

Наше зрительное восприятие физических явлений в окружающем мире определяется взаимодействием света с веществом. Воздействие света на вещество состоит в поглощении им световой энергии, приносимой излучением, т.е. первичным процессом является поглощение света. Такое взаимодействие, например, в сетчатке глаза приводит к зрительным ощущениям.

При падении света на поверхность непрозрачного предмета часть излучения проникает в него и поглощается, другая часть отражается от поверхности, и мы видим предмет в отраженном свете. Более темные поверхности поглощают свет сильнее, чем более светлые. Доля отраженного от поверхности света зависит от длины волны.

Для прозрачной среды, например, стекла при падении на него световой волны главным результатом взаимодействия является ее отражение и преломление, а поглощением электромагнитной энергии в видимом диапазоне можно пренебречь. Именно поэтому среда и воспринимается зрительно как прозрачная.

Мы видим не только тела, которые отражают или рассеивают свет, но и тела, которые светятся сами, например Солнце, звезды, пламя. Электромагнитное излучение испускают все тела, причем его интенсивность зависит от температуры их поверхности. В видимом диапазоне спектра излучение достаточной интенсивности, позволяющее видеть предмет, возникает, если температура поверхности предмета намного больше комнатной.

Взаимодействие электромагнитных волн с веществом приводит и к другим физическим явлениям, изучение которых помогло выяснить природу света.     

В 1887 г. Генрих Герц обнаружил, что пробой воздушного промежутка между электродами искрового разрядника происходит при меньшем напряжении, если освещать отрицательно заряженный электрод ультрафиолетовым излучением. Дальнейшие эксперименты показали, что отрицательно заряженная цинковая пластинка при облучении ультрафиолетовым излучением (рис. 171, а) разряжается. Оба эти явления можно объяснить, предполагая, что под действием падающего излучения из металла вылетают отрицательно заряженные частицы — электроны (рис. 171, б). Это явление получило название фотоэффекта.

Фотоэффектом (фотоэлектрическим эффектом) называется явление взаимодействия электромагнитного излучения с веществом, в результате которого энергия излучения передается электронам вещества.

Если фотоэффект сопровождается вылетом электронов с поверхности вещества, то его называют внешним фотоэффектом, а вылетающие электроны — фотоэлектронами. Если фотоэффект не сопровождается вылетом электронов с поверхности вещества, то его называют внутренним фотоэффектом. При внутреннем фотоэффекте часть электронов, находящихся в веществе в связанном состоянии, переходит в свободное состояние, увеличивая концентрацию свободных носителей тока. Это приводит к изменению электрических свойств вещества под действием падающего на него света. Внутренний фотоэффект присущ только полупроводникам и диэлектрикам. Испускание веществом каких-либо частиц называется эмиссией. Поэтому внешний фотоэффект называют также фотоэлектронной эмиссией (фотоэмиссией).

(фотос) по-гречески означает «свет»

Систематическое изучение фотоэффекта было проведено в 1888—1889 гг. русским физиком Александром Григорьевичем Столетовым.

Схема установки для экспериментального изучения внешнего фотоэффекта представлена на рис. 172, а.

В экспериментах Столетова в электрическую цепь были включены два электрода (2) и (3), один из которых (2)  был изготовлен из медной сетки, а (3)  — представлял собой цинковую пластинку. Медная сетка была заряжена положительно, а цинковая пластинка — отрицательно.

Наблюдения показали, что под действием падающего ультрафиолетового излучения в цепи возникает электрический ток. Этот ток называется фототоком.

Изменяя напряжение  между пластинами A и B с помощью реостата (рис. 172, б), Столетов исследовал зависимость силы фототока Iф от напряжения U (вольтамперную характеристику). Как видно из представленной на рис. 172, в зависимости даже при отсутствии разности потенциалов между пластинами в цепи проходит фототок. Так как скорости электронов, испускаемых катодом, различны как по модулю, так и по направлению, то не все они при малых значениях напряжения могут достигнуть анода.

При увеличении напряжения между электродами сила фототока возрастает до некоторого максимального значения Iн (см. рис. 172, в),  называемого фототоком насыщения. При фототоке насыщения все электроны, испускаемые катодом за единицу времени, достигают анода. Вот почему дальнейшее увеличение напряжения не приводит к росту силы фототока. Изменение полярности напряжения приводит к исчезновению фототока при напряжении Uз, которое называется задерживающим напряжением (см.рис. 172, в).

Для большинства веществ фотоэффект возникает только под действием ультрафиолетового излучения. Однако некоторые металлы, например, литий, натрий и калий, испускают электроны и при их облучении видимым светом.

Экспериментально установлены следующие законы внешнего фотоэффекта:

1. Сила фототока насыщения Iн прямо пропорциональна интенсивности  падающего излучения (первый закон фотоэффекта). Вольтамперная характеристика фотоэффекта показана на рис. 172, в и 173, а. Зависимость фототока насыщения от интенсивности падающего излучения показана на рис. 173, б. Так как график выходит из начала координат, то сила фототока насыщения равна нулю (I = 0) только при отсутствии излучения. Иными словами,  фотоэффект наблюдается даже при малых значениях интенсивности падающего излучения.

2. Максимальная кинетическая энергия  фотоэлектронов не зависит от интенсивности падающего излучения и линейно возрастает с увеличением частоты ν падающего излучения (второй закон фотоэффекта). Подчеркнем, что кинетическая энергия Ek фотоэлектронов, вылетающих из фотокатода, изменяется в некотором диапазоне , так как фотоэлектроны часть своей энергии, полученной от падающего излучения, передают частицам вещества до вылета с его поверхности. На рисунке 174 представлена зависимость  от частоты падающего излучения.

3. Для каждого вещества существует граничная частота  такая, что излучение меньшей частоты не может вырывать электроны из его поверхности (третий закон фотоэффекта). Эта минимальная частота νmin называется красной границей фотоэффекта.  Такое название связано с тем, что минимальной частотой излучения в видимом диапазоне обладает излучение, соответствующее красному цвету. Заметим, что красная граница фотоэффекта для различных веществ совсем не обязательно соответствует красному цвету. Например, для рубидия она соответствует желтому цвету, для кальция — синему, а для некоторых веществ может вообще находиться как в инфракрасной, так и в ультрафиолетовой областях спектра. 

На рисунке 175 приведены экспериментальные зависимости максимальной кинетической энергии  фотоэлектронов  от частоты падающего излучения для цезия (Cs) , рубидия (Rb), магния (Mg) и серебра (Ag) . Как видно из рисунка 175 экспериментальные прямые параллельны друг другу, причем точки пересечения графиков с осью абсцисс (частот) определяют красные границы фотоэффекта для каждого из них.

При частотах больших νmin излучение даже очень малой интенсивности вызывает фотоэффект. Кроме того, между моментом включения источника излучения и моментом вылета электронов из образца фактически нет задержки во времени: электроны вылетают из вещества через промежуток времени порядка 10 to the power of negative 9 end exponent space minus space 10 to the power of negative 10 end exponent после начала облучения, т.е. практически мгновенно.

Следует заметить, что во время исследования фотоэффекта Столетовым еще ничего не было известно об электроне, который будет открыты Джозефом Джоном Томсоном только в 1897 г.

Подчеркнем, что установленные экспериментально законы фотоэффекта невозможно объяснить на основе представлений о том, что свет — это электромагнитная волна. На основе этих представлений можно объяснить только первый из приведенных экспериментальных законов фотоэффекта: чем больше энергия падающего света, тем больше электронов вылетает из вещества. Объяснить же 2-й и 3-й законы фотоэффекта в рамках классической теории излучения не представляется возможным.

Так, например, непонятно, почему максимальная кинетическая энергия фотоэлектронов не зависит от интенсивности падающего излучения. Невозможно также объяснить существование красной границы фотоэффекта. Действительно, даже при малой частоте падающего излучения, но при длительном воздействии электромагнитной волны на электрон ему можно сообщить энергию, необходимую для вылета из вещества. Следовательно, исходя из волновых представлений, красная граница фотоэффекта не должна существовать. Все эти противоречия были сняты квантовой теорией.

Квантовые представления были впервые введены немецким физиком Максом Планком. Он сделал фундаментальное предположение, что излучение и поглощение электромагнитных волн атомами и молекулами происходит не непрерывно, а отдельными порциями энергии — квантами. Соответственно, под квантом следует понимать минимальную порцию излучаемой или поглощаемой энергии. Энергия кванта прямо пропорциональна частоте излучения 

где  h — коэффициент пропорциональности, который называют постоянной Планка. Это — фундаментальная постоянная.

16 ноября 2018 г. на заседании Генеральной ассамблеи мер и весов значение постоянной Планка было принято равным 

Приближенное значение постоянной Планка, применяемое при решении задач

Энергия любой колебательной системы (атома, молекулы), совершающей колебания с частотой  , может принимать лишь определенные дискретные значения, отличающиеся на целое число элементарных порций — квантов энергии:

где  n — целое положительное число.     

Следовательно, атом (молекула) может обладать не любой энергией, а лишь энергией кратной . Таким образом, впервые в физике появилась идея о квантовании энергии.

14 декабря 1900 г. Планк доложил свои результаты на заседании Немецкого физического общества, который и считают днем рождения квантовых представлений. Появился квант энергии как дискретная порция энергии. Планк относил дискретность энергии к свойствам вещества, а излучение рассматривалось как электромагнитные волны.

После выдвижения гипотезы Планка (1900 г.) началось интенсивное развитие квантовых представлений в физике, которые к 1925—1928 гг. превратились в стройную и логичную квантовую теорию, открывшую «новую эру» в развитии физики.

В 1898 г. немецкий физик Филипп Ленард и английский физик Джозеф Джон Томсон определили отношение заряда q частицы, вылетающей с поверхности металла при фотоэффекте, к ее массе m (так называемый удельный заряд — ) по ее отклонению в электрическом и магнитном полях. Эти измерения дали то же значение, что и отношение заряда электрона к его массе begin mathsize 20px style q over m equals 1 comma 76 times 10 to the power of 7 Кл over кг end style. Таким образом, было доказано, что выбиваемые светом заряженные частицы — электроны.

Слово квант происходит от латинского слова quantum — «сколько» или «как много». Вообще, это слово обозначает часть, долю или неделимую порцию. Планк поэтически назвал новую фундаментальную постоянную  h — «таинственным послом из реального мира».

За работы по определению удельного заряда электрона , которые привели к открытию первой элементарной частицы — электрона, Дж. Дж. Томсон в 1906 г. был удостоен Нобелевской премии по физике.

В 1918 г. Макс Планк был удостоен Нобелевской премии « …в знак признания услуг, которые он оказал физике своим открытием квантов энергии».