§ 24. Энергия электростатического поля конденсатора
Процесс зарядки конденсатора можно представить как перенос заряда q с одной обкладки на другую, в результате чего одна из них приобретает заряд –q, а другая — +q. Работа, совершённая при этом внешней силой, равна энергии электростатического поля заряженного конденсатора.
Убедиться в том, что заряженный конденсатор обладает энергией, можно на опыте. Соберём электрическую цепь, состоящую из источника тока, конденсатора и электрической лампы. Схема цепи представлена на рисунке 125. Зарядим конденсатор, подсоединив его к источнику тока. Затем, отключив конденсатор от источника тока, подсоединим его к лампе. При этом наблюдаем кратковременную вспышку света. В данном случае во время разрядки конденсатора энергия, запасённая им при зарядке, превращается во внутреннюю энергию спирали лампы, часть этой энергии расходуется на излучение света. При прохождении электрического тока по цепи с источником тока конденсатор заряжался, т. е. на его обкладках накапливались электрические заряды. При этом в окружающем конденсатор пространстве возникло электростатическое поле. Суммарный электрический заряд обеих обкладок конденсатора до его зарядки, во время зарядки и после разрядки конденсатора равен нулю. Единственное изменение, которое произошло при разрядке конденсатора, заключается в том, что исчезло электростатическое поле, которое создавалось зарядами обеих обкладок конденсатора. Следовательно, энергией обладало электростатическое поле, образованное зарядами обкладок заряженного конденсатора.
Если форма и размеры обкладок конденсатора, а также расстояние между ними и диэлектрические свойства среды, заполняющей пространство между обкладками, остаются неизменными, то напряжение на конденсаторе прямо пропорционально модулю заряда его обкладок (рис. 125.1). Чтобы увеличить модуль заряда на обкладках от qi до qi + δq, внешней силе необходимо совершить работу по перемещению бесконечно малой положительной порции заряда δq с отрицательной обкладки на положительную. Этой работе на рисунке 125.1 соответствует площадь заштрихованного столбика. Полная же работа Авнеш по зарядке конденсатора до напряжения U равна сумме площадей всех аналогичных столбиков, т. е. площади фигуры под графиком зависимости U(q). В данном случае — площади треугольника, равной половине произведения его основания на высоту:
Приращение энергии электростатического поля заряженного конденсатора равно работе, совершённой внешней силой при его зарядке:
Учитывая, что q = CU, формулу для определения энергии электростатического поля заряженного конденсатора можно записать в виде:
, или .
Энергию электростатического поля заряженного плоского конденсатора можно выразить через напряжённость поля, сосредоточенного между его обкладками (рис. 125.2). Электроёмкость плоского конденсатора , напряжение между обкладками U = Ed. Следовательно,
где V = Sd — объём пространства между обкладками конденсатора.
Как изменится энергия электростатического поля заряженного конденсатора при увеличении расстояния между его обкладками, если: а) конденсатор отключён от источника тока; б) конденсатор подключён к источнику тока?