§ 13. Природа и типы химической связи

Ковалентная связь

Ковалентная связь — это химическая связь, образованная общими (связывающими) электронными парами. Её называют локализованной, так как общая пара электронов размещается (локализуется) между двумя ядрами. Это заставляет положительно заряженные ядра притягиваться к паре электронов, расположенной между ядрами. Такая связь возникает между атомами с одинаковыми или близкими значениями электроотрицательности. Как правило, это атомы неметаллов.

Появление пары электронов, связывающей соседние атомы, можно представить двумя способами, то есть существует два механизма образования ковалентной связи — обменный и донорно-акцепторный.

Обменный механизм объясняет образование общей электронной пары из неспаренных валентных электронов, принадлежащих разным атомам. При этом электроны, образующие общую пару, должны иметь противоположные (антипараллельные) спины. Перекрывание двух электронных облаков приводит к увеличению электронной плотности между ядрами:

#

В образовании ковалентной связи могут участвовать s-, p- и d-электронные облака. Например, в связывании атомов хлора и водорода в молекуле H—Сl участвуют 1s-электрон атома водорода и неспаренный 3p-электрон атома хлора (рис. 24).

img
Рис. 24. Образование ковалентной связи в молекуле HCl

Каждый из связанных в общую электронную пару атомов приобретает электронную конфигурацию благородного газа: водород — гелия 1s2, а хлор — аргона 1s22s22р63s23р6. В результате оба атома достигают наиболее устойчивой электронной конфигурации.

Ещё один пример — образование связей в молекуле аммиака NH3. У атома азота согласно электронно-графической схеме есть три неспаренных электрона: 7N img, у атома водорода — один box enclose downwards arrow. Эти электроны участвуют в образовании трёх ковалентных связей по обменному механизму с атомами водорода: img или img

Отметим, что одновременно с этим у азота на 2s-орбитали остаётся неподелённая электронная пара — пара электронов, не принимающая участия в образовании химических связей.

Обменным механизмом объясняют образование ковалентной связи в подавляющем большинстве молекул органических и неорганических веществ, в атомных кристаллах алмаза C, красного фосфора P, карборунда SiC, кварца SiO2 и др.

Донорно-акцепторный механизм образования ковалентной связи предполагает образование общей пары электронов за счёт передачи неподелённой электронной пары от одного атома (донора) на вакантную атомную орбиталь другого (акцептора). В качестве примера рассмотрим образование химической связи в катионе аммония NH subscript 4 superscript plus при протекании реакции:

NH subscript 3 space plus space HCl space equals space NH subscript 4 Cl (хлорид аммония)

или в ионном виде:

NH subscript 3 plus straight H to the power of plus equals NH subscript 4 superscript plus (ион аммония).

Это взаимодействие можно представить электронными формулами:

#

При взаимодействии молекулы img с катионом водорода box enclose space space space space end enclose straight H to the power of plus, у которого на 1s-орбитали нет электронов, неподелённая пара электронов азота размещается на свободной 1s-орбитали box enclose space space space space end enclose иона водорода. В результате образуется катион аммония NH subscript 4 superscript plus с четырьмя ковалентными связями:

#

Так как молекула аммиака электронейтральна, а присоединённый к ней ион имеет заряд «+», то образовавшийся катион аммония также имеет положительный заряд. Этот заряд принадлежит целому иону, а не отдельному атому, поэтому в структурной формуле знак заряда иона ставят за квадратной скобкой: img Если мы хотим подчеркнуть механизм образования связи, то можно стрелкой указать направление смещения электронной пары от донора к акцептору: img Но делать это необязательно, так как все связи в молекуле, независимо от механизма их образования, являются равноценными.

Аналогичным образом можно представить образование химической связи в катионе гидроксония H3O+: в результате гидратации иона водорода в водных растворах неподелённая электронная пара атома кислорода в молекуле воды размещается на свободной 1s-орбитали иона водорода.

img

Донорно-акцепторным механизмом объясняют образование ковалентной связи в молекулах угарного газа img, азотной кислоты img и др.