§ 20. Праходжанне святла праз аптычныя элементы
Законы адбіцця і праламлення святла шырока выкарыстоўваюцца для кіравання ходам светлавых пучкоў. Для адбіцця святла ў прыборах прымяняюцца люстры і прызмы, для праламлення — прызмы, плоскапаралельныя пласцінкі (мал. 137), лінзы. Люстры, прызмы, пласцінкі і лінзы з’яўляюцца элементамі, камбінуючы якія ствараюць розныя аптычныя прыборы. Як яны працуюць? |
Плоскапаралельная пласцінка
Разгледзім ход светлавога праменя ад крыніцы ў плоскапаралельнай пласцінцы таўшчынёй d, якая знаходзіцца ў паветры (мал. 138, а). Згодна з законам праламлення, на першай і другой межах падзелу для праменя, які падае пад вуглом a на першую мяжу, маем (мал. 138, б):
sinα = nsinγ, nsinα1 = sinγ1 |
Тут γ — вугал праламлення на першай мяжы, α1 — вугал падзення на другую мяжу, γ1 — вугал праламлення на другой мяжы, n — абсалютны паказчык праламлення рэчыва пласцінкі.
Накрыж ляжачыя вуглы γ і α1 пры паралельных прамых AD і BK (перпендыкулярах да першай і другой паралельных меж) роўныя, г. зн. α1 = γ. Значыць, sinα = nsinγ = nsinα1 = sinγ1 Адкуль вынікае, што:
α = γ1. | (1) |
Такім чынам, прамень святла, праходзячы праз плоскапаралельную пласцінку, з абодвух бакоў якой знаходзіцца адно і тое ж асяроддзе, зрушваецца на некаторую адлегласць h = BC перпендыкулярна да свайго пачатковага напрамку (гл. мал. 138, б).
Адпаведна, усе прадметы, калі глядзець на іх скрозь празрыстую плоскапаралельную пласцінку пад вуглом, не роўным нулю, будуць таксама здавацца зрушанымі.
Як бачна на малюнку 138, а, прамені, адбітыя ад верхняй і ніжняй граней пласцінкі, паралельны адзін аднаму на выхадзе з яе.
Знойдзем, ад якіх параметраў пласцінкі залежыць зрушэнне h праменя
З вынікае, што:
h= BC = ABsin(α - γ). |
З маем:
. |
Адкуль:
. |
З улікам закона праламлення і трыганаметрычнай тоеснасці sin2γ + cos2γ = 1 знаходзім:
. |
Канчаткова, адлегласць h паміж напрамкамі ўваходнага і выходнага праменяў можна вызначыць з суадносіны:
. | (1-1) |
Як бачна з суадносіны (1-1), зрушэнне h праменя пры дадзеным вугле падзення α залежыці ад таўшчыні d пласцінкі і яе паказчыка праламлення n.
Трохграневая прызма
Разгледзім ход праменя ў трохграневай прызме. Няхай светлавы прамень NM падае пад вуглом α1 на бакавую грань трохграневай прызмы ABC, сячэнне якой паказана на малюнку 138-2. Прызма, вырабленая з рэчыва з абсалютным паказчыкам праламлення n2 , знаходзіцца ў асяроддзі з абсалютным паказчыкам праламлення n1. Грані прызмы, праходзячы праз якія прамені святла праламляюцца, называюцца праламляльнымі. Грань, якая ляжыць насупраць праламляльнага вугла, называецца асновай прызмы. Вугал φ пры вяршыні B трохвугольніка называецца праламляльным вуглом прызмы.
Няхай прамень і ляжаць у адной плоскасці — плоскасці аркуша кнігі. З закона праламлення святла знаходзім вугал праламлення γ1:
. | (1-2) |
Калі паказчык прызмы n2 > n1 , то праломлены прамень NE падае на другую бакавую грань прызмы пад вуглом γ2. Поўнае адбіццё на другой праламляльнай грані не адбываецца пры ўмове і прамень выходзіць з прызмы пад вуглом α2. Яго знаходзім з закона праламлення:
. | (1-3) |
Адхіленне ад пачатковага напрамку праменя у выніку праламленняў на гранях прызмы вызначаецца LOE = δ (гл. мал. 138-2). Вугал δ паміж напрамкамі ўваходнага і выходнага праменяў называецца вуглом адхілення. Разгледзім . У ім па тэарэме аб знешнім вугле трозвугольніка знаходзім:
γ1 + γ2 = φ. | (1-4) |
Выкарыстаем гэтую ж тэарэму да :
(α1 - γ1) + (α2 - γ2) = δ. | (1-5) |
З формул (1-4) і (1-5) вызначым сувязь вугла падзення α1, вугла праламлення α2 з праламляльным вуглом прызмы φ і вуглом адхілення δ выходнага праменя пачатковага напрамку:
δ = α1 + α2 - φ. | (1-6) |
У выніку атрымалі сістэму ўраўненняў (1-2), (1-3), (1-4), (1-6):
(1-7) |
Сістэма ўраўненняў (1—7) дазваляе рашыць задачу на праходжанне праменя святла праз трохграневую прызму без поўнага адбіцця на яе гранях.
Калі вугал падзення α1 на грань прызмы і праламляльны вугал прызмы φ малыя, то малымі будуць і вуглы , γ1, γ2, α2 Таму ў законах праламлення (1-2) і (1-3) адносіну сінусаў можна замяніць адносінай вуглоў, выражаных у радыянах, г. зн.
. | (1-8) |
Падставіўшы выразы для (1-8) α1 і α2 у суадносіну (7), знойдзем
. | (1-9) |
З суадносіны (1-9) вынікае, што: па-першае, чым большы праламляльны вугал φ, тым большы вугал адхілення δ праменяў прызмай; па-другое, вугал адхілення δ праменяў павялічваецца з ростам абсалютнага паказчыка праламлення n2 рэчыва прызмы. Як бачна з малюнка 138-2, прамень святла, праходзячы праз трохграневую прызму, адхіляецца да яе патоўшчанай частцы, калі абсалютны паказчык праламлення рэчыва прызмы большы за абсалютны паказчык праламлення навакольнага асяроддзя (n1 > n2).