§ 37. Электрический ток в полупроводниках. Собственная и примесная проводимости полупроводников

Природа электрического тока в полупроводниках. Экспериментально установлено, что при прохождении электрического тока в полупроводниках, как и в металлах, никаких химических изменений не происходит, т. е. перенос заряда при прохождении тока не сопровождается переносом вещества. Это свидетельствует о том, что свободными носителями электрического заряда в полупроводниках, как и в металлах, являются электроны.

Рассмотрим механизм проводимости полупроводников на примере кристалла германия Ge, валентность атомов которого равна четырём.

Рис.
Рис. 217

Атомы германия на внешней оболочке имеют четыре сравнительно слабо связанных с ядром валентных электрона. При этом каждый атом кристалла связан с четырьмя соседними атомами ковалентными связями. Два соседних атома объединяют два своих валентных электрона (по одному от каждого атома), которые образуют электронную пару. Поэтому все валентные электроны атома германия участвуют в образовании ковалентных связей. На рисунке 217 изображена плоская схема пространственной решётки кристалла германия. При температуре, близкой к абсолютному нулю, ковалентные связи германия достаточно прочны, поэтому свободные электроны отсутствуют и германий является диэлектриком.

Рис.
Рис. 218

Для того чтобы разорвать ковалентную связь и сделать электрон свободным, кристаллу германия необходимо сообщить некоторую энергию, например, нагревая кристалл или облучая его поверхность. При этом часть электронов получает энергию, достаточную для того, чтобы покинуть атомы и стать свободными.

Нейтральный атом, которому принадлежал освободившийся электрон, становится положительно заряженным ионом, а в ковалентных связях образуется вакантное место с недостающим электроном. Его называют дыркой (рис. 218).

Материал повышенного уровня

Одновременно с процессом возникновения свободных электронов и дырок происходит процесс, при котором один из электронов (не свободный, а обеспечивающий ковалентную связь) перескакивает на место образовавшейся дырки и восстанавливает ковалентную связь. При этом положение дырки меняется, что можно моделировать как её перемещение. Таким образом, при отсутствии внешнего электрического поля в кристалле полупроводника наблюдается беспорядочное перемещение свободных электронов и дырок, концентрации которых в чистом полупроводнике одинаковые.

Интересно знать

Дырочная проводимость в действительности обусловлена «эстафетным» перемещением по вакансиям от одного атома кристалла полупроводника к другому электронов, которые осуществляют ковалентную связь. Дырок, как положительных зарядов, существующих реально, в действительности нет. Тем не менее, представление о них является хорошей физической моделью, которая дает возможность рассматривать электрический ток в полупроводниках на основе законов физики.

Рис.
Рис. 219

Дырки считают подвижными носителями положительного заряда, который равен модулю заряда электрона.

При наличии внешнего электрического поля на беспорядочное движение свободных электронов и дырок накладывается их упорядоченное движение, т. е. возникает электрический ток. Причём движение свободных электронов происходит в направлении, противоположном направлению напряжённости E with rightwards arrow on top внешнего электрического поля, а движение дырок совпадает с направлением напряжённости E with rightwards arrow on top поля (рис. 219).

Проводимость, обусловленную движением свободных электронов и дырок в чистом полупроводнике, называют собственной проводимостью полупроводника.

Материал повышенного уровня

При сообщении полупроводнику энергии концентрация свободных электронов, а следовательно, и дырок возрастает, так как увеличивается число разрывов ковалентных связей. Этим и объясняется уменьшение сопротивления полупроводника при его нагревании и облучении.