§ 1. Основные положения молекулярно-кинетической теории

Тепловое движение частиц вещества. Молекулы, атомы и другие частицы, образующие вещество, находятся в непрерывном тепловом движении.

Тепловое движение — беспорядочное движение частиц вещества, интенсивность которого зависит от температуры тела.

В 1827 г. английский ботаник Роберт Броун (1773–1858), наблюдая в микроскоп взвесь цветочной пыльцы в воде, обнаружил, что частицы взвеси непрерывно двигались, описывая весьма причудливые траектории. Это движение частиц, признанное экспериментальным подтверждением теплового движения частиц вещества, назвали броуновским движением.

Броуновское движение — беспорядочное движение взвешенных* в жидкости или газе мельчайших нерастворимых твёрдых частиц размерами порядка 1 мкм и меньше.

Рис.
Рис. 7

Броуновские частицы движутся непрерывно и беспорядочно, а траектории их движений очень сложны. На рисунке 7 изображена упрощённая траектория движения броуновской частицы. Точками отмечены положения частицы через одинаковые промежутки времени. Траектория движения в течение каждого промежутка времени заменена отрезком прямой, который представляет собой модуль результирующего перемещения частицы.

Рис.
Рис. 8

Броуновское движение обусловлено свойствами жидкости или газа. Оно не зависит от природы вещества броуновской частицы и внешних воздействий (кроме температуры). Причиной броуновского движения является тепловое движение частиц среды, окружающих броуновскую частицу, и отсутствие точной компенсации ударов, испытываемых частицей со стороны окружающих её молекул (атомов или ионов) (рис. 8), поскольку движение молекул носит случайный характер.

Материал повышенного уровня

Если взвешенная частица достаточно велика, то число молекул, налетающих на неё со всех сторон, чрезвычайно велико. Их удары в каждый момент времени компенсируются, и частица остаётся на месте. Чем меньше размеры и масса броуновской частицы, тем заметнее становятся изменения её импульса под воздействием ударов. Эти удары не уравновешивают друг друга, а порождают результирующую силу, меняющуюся по величине и направлению. Это и является причиной того, что броуновская частица движется случайным образом по всему объёму, занимаемому жидкостью или газом.

Интенсивность движения броуновских частиц растёт с повышением температуры и уменьшением вязкости среды. Броуновское движение едва удаётся подметить в глицерине, а в газах оно, напротив, чрезвычайно интенсивно.

От теории к практике

1. Можно ли считать броуновским беспорядочное движение пылинок в воздухе (рис. 9)?

2. При рассмотрении в микроскопе капли крови можно увидеть на фоне бесцветной жидкости красные кровяные тельца, которые непрерывно и беспорядочно движутся (рис. 10). Как объяснить это явление?

Из истории физики

Первую количественную теорию броуновского движения предложил в 1905 г. Альберт Эйнштейн (1879–1955). Польский физик Мариан Смолуховский (1872–1917) в 1906 г. также разработал количественную теорию броуновского движения. Экспериментальное подтверждение предложенной учёными теории явилось заслугой французского физика Жана Перрена (1870–1942). «За доказательство существования молекул» Ж. Перрену присуждена Нобелевская премия по физике за 1926 г.

Ещё одним подтверждением теплового движения частиц (молекул, атомов или ионов) вещества является диффузия (лат. diffusio — распространение, растекание, рассеивание).

Диффузия — процесс взаимного проникновения частиц соприкасающихся веществ между частицами другого вещества вследствие их теплового движения.

Если частицы соприкасающихся веществ распределены в пространстве неоднородно, то данный процесс приводит к самопроизвольному выравниванию их концентраций.

Концентрация частиц — физическая величина, численно равная числу частиц, содержащихся в единичном объёме:

img

Рис.
Рис. 11

Если в разных частях одного и того же тела концентрации частиц не совпадают, то вследствие их теплового движения при постоянной температуре и отсутствии внешних сил происходит упорядоченное перемещение. Оно приводит к выравниванию концентраций (рис. 11).

Скорость диффузии зависит от характера движения частиц вещества, который определяется температурой и особенно агрегатным состоянием. В газах диффузия происходит быстрее, чем в жидкостях, а тем более в твёрдых телах.

Диффузия играет важную роль в природе и технике. Благодаря диффузии осуществляется питание растений необходимыми веществами из почвы, в живых организмах происходит всасывание питательных веществ через стенки сосудов пищеварительного тракта. Для увеличения твёрдости стальных деталей их поверхностный слой подвергают диффузионному насыщению углеродом. Диффузию используют в ядерных технологиях как один из способов обогащения урана.

От теории к практике

Что общего у броуновского движения и диффузии? Чем они различаются?

Интересно знать

Интересно знать Впервые воочию убедиться, что диффузия происходит не только в газах и жидкостях, но и в твёрдых телах, удалось в 1896 г. английскому металлургу Робертсу-Аустену. Он прижал друг к другу золотой диск и свинцовый цилиндр и поместил их на 10 суток в печь, в которой поддерживалась температура 200 °С. Когда печь открыли и извлекли из неё диск и цилиндр, оказалось, что их невозможно разъединить. Диффузия привела к тому, что золото и свинец буквально «проросли» друг в друга. В настоящее время такая технология соединения деталей хорошо изучена и получила название диффузионной сварки.

* Взвешенные частицы — это частицы с плотностью вещества, сравнимой с плотностью среды (жидкости или газа), в которой они находятся, распределившиеся определённым образом по всему объёму этой среды.