Печатать книгуПечатать книгу

§ 28. Индукция магнитного поля. Линии индукции магнитного поля

Сайт: Профильное обучение
Курс: Физика. 10 класс
Книга: § 28. Индукция магнитного поля. Линии индукции магнитного поля
Напечатано:: Гость
Дата: Вторник, 7 Май 2024, 00:36

Для описания электростатического поля используют его основную характеристику — напряжённость E with rightwards arrow on top. Существует ли аналогичная характеристика для описания магнитного поля?

Направление индукции магнитного поля. Основной характеристикой, используемой для описания магнитного поля, является физическая векторная величина — индукция магнитного поля B with rightwards arrow on top. Зная индукцию магнитного поля, можно определить силу, действующую на проводник с током (движущийся заряд) в магнитном поле.

Для определения направления индукции магнитного поля B with rightwards arrow on top используют ориентирующее действие магнитного поля на магнитную стрелку или рамку с током.

За направление индукции магнитного поля в данной точке поля принимают направление от южного полюса S к северному полюсу N свободно устанавливающейся магнитной стрелки, расположенной в рассматриваемой точке (рис. 143).

Рис.
Рис. 143

Материал повышенного уровня

Направление магнитной индукции B with rightwards arrow on top в том месте магнитного поля, где расположена небольшая плоская рамка с током, совпадает с направлением положительной нормали n with rightwards arrow on top к плоскости рамки. Направлением положительной нормали принято считать направление движения буравчика, рукоятку которого вращают в направлении тока в рамке. В исследуемом магнитном поле направление положительной нормали совпадает с направлением от южного полюса S к северному полюсу N магнитной стрелки (рис. 143.1).

Рис.
Рис. 143.1

В магнитном поле прямолинейного проводника с током магнитные стрелки располагаются по касательным к окружностям (рис. 144), центры которых лежат на оси проводника.

На практике часто приходится иметь дело с магнитными полями электрических токов, проходящих по катушкам (соленоидам). В магнитном поле катушки с током магнитные стрелки устанавливаются по касательным к замкнутым кривым, охватывающим витки катушки (рис. 145).

Линии индукции магнитного поля. Распределение электростатического поля в пространстве можно сделать «видимым», используя представление о линиях напряжённости. Исследуя магнитное поле, создаваемое проводником с током или постоянным магнитом, с помощью магнитной стрелки в каждой точке пространства можно определить направление индукции магнитного поля. Такое исследование позволяет графически представить магнитное поле в виде линий магнитной индукции.

Рис.
Рис. 146

Линии индукции магнитного поля – воображаемые линии в пространстве, касательные к которым в каждой точке совпадают с направлением индукции магнитного поля (рис. 146).

Линии индукции магнитного поля непрерывны (не имеют ни начала, ни конца), замыкаются сами на себя. Это характерно для любых магнитных полей. Поля, обладающие таким свойством, называют вихревыми.

Очевидно, что через любую точку в магнитном поле можно провести только одну линию индукции. Поскольку индукция магнитного поля в любой точке пространства имеет определённое направление, то и направление линии индукции в каждой точке этого поля может быть только единственным. Это означает, что линии магнитной индукции, так же как и линии напряжённости электрического поля, не пересекаются.

Материал повышенного уровня

Из истории физики

С ноября 1831 г. Фарадей начал систематическую публикацию своих исследований, составивших трёхтомный труд под заглавием «Экспериментальные исследования по электричеству», где он, в частности, высказался о картине линий магнитной индукции (в приведённом фрагменте это магнитные силовые линии): «Экспериментатор, желающий изучить магнитную силу посредством проявления её магнитными силовыми линиями, поступил бы произвольно и опрометчиво, отказавшись от самого ценного средства, от употребления железных опилок. Пользуясь ими, он может многие свойства этой силы, даже в сложных случаях, тотчас показать наглядно, может проследить глазом различные направления силовых линий и определить относительную полярность, может наблюдать, в каком направлении сила эта возрастает, в каком убывает… При их употреблении вероятные результаты видны сразу, и могут быть получены ценные указания для будущих опытов».

Рис.
Рис. 147

Направление линий индукции магнитного поля. Определить направление линий индукции магнитного поля можно, используя правило буравчика: если поступательное движение буравчика совпадает с направлением тока, то рукоятка буравчика поворачивается в направлении линий индукции магнитного поля. В случае прямолинейного проводника с током линии индукции магнитного поля представляют собой концентрические окружности, которые находятся в плоскостях, перпендикулярных к проводнику (рис. 147).

Определить направление линий индукции магнитного поля прямолинейного проводника с током можно также с помощью правила правой руки: если мысленно обхватить проводник правой рукой так, чтобы большой палец указывал направление тока, то остальные пальцы окажутся согнуты в направлении линий индукции магнитного поля (рис. 148).

Картину линий индукции магнитного поля можно получить, используя мелкие железные опилки, которые в магнитном поле ведут себя как магнитные стрелки. На рисунке 149 представлена картина магнитного поля прямолинейного участка проводника с током. Картина магнитного поля кругового витка с током и графическое изображение линий индукции представлены на рисунках 150, а, б.

Полагают, что линии индукции магнитного поля, созданного постоянным магнитом, направлены внутри магнита от его южного полюса S к северному N (рис. 151).

Магнитное поле соленоида подобно полю полосового магнита. На рисунках 152, а, б представлена картина магнитного поля соленоида с током и дано графическое изображение линий индукции. Соленоид представляет собой цилиндрическую катушку, на которую виток к витку намотан провод, изолированный тонким слоем лака. Если длина соленоида много больше его диаметра, то внутри центральной части соленоида линии индукции магнитного поля практически параллельны и направлены вдоль его оси.

Однородное магнитное поле — поле, индукция которого во всех точках пространства одинакова.

Рис.
Рис. 153

Линии индукции такого поля параллельны. В противном случае поле называют неоднородным. Магнитное поле внутри длинного соленоида практически однородно, а вблизи краёв — неоднородно. Неоднородно и магнитное поле прямолинейного проводника с током (см. рис. 148).

Для наглядности на рисунках линии индукции изображают гуще в тех местах магнитного поля, где больше значение индукции магнитного поля (рис. 152, б). При этом на линии индукции указывают стрелкой направление индукции магнитного поля. Для крайних витков соленоида магнитное поле «кругового» витка с током, проходящим в направлении движения часовой стрелки, эквивалентно полю южного полюса постоянного магнита, а магнитное поле «кругового» витка с током, проходящим против направления движения часовой стрелки, эквивалентно полю северного полюса постоянного магнита (правило часовой стрелки) (рис. 153).

От теории к практике
Рис.
Рис. 154

На рисунке 154 схематически изображено магнитное поле кругового витка с током. Однородно ли такое магнитное поле? Почему?

Определение направления индукции магнитного поля. Для определения направления индукции магнитного поля можно воспользоваться любым из правил, сформулированных выше. Причём, пользуясь правилом буравчика, надо помнить, что направление тока — это направление упорядоченного движения положительных зарядов. Если на рисунке изображён прямолинейный проводник с током, расположенный перпендикулярно плоскости страницы (рис. 155), и при этом ток направлен от читателя, то его условно обозначают крестиком (рис. 156, а); в случае, если ток направлен к читателю, — точкой (рис. 156, б). Так же (точкой или крестиком) обозначают направления векторов (индукции магнитного поля, силы и др.), расположенных перпендикулярно плоскости рисунка.

Полюсы соленоида, а следовательно, и направление индукции магнитного поля можно определить по правилу часовой стрелки (см. рис. 153) или правилу буравчика: если направление вращения рукоятки буравчика совпадает с направлением тока в витке, то поступательное движение острия буравчика укажет направление индукции магнитного поля внутри соленоида, а следовательно, и положение его северного полюса.

img

img

1. Какие правила используют для определения направления индукции магнитного поля?

2. Как графически изображают магнитное поле? Что называют линиями индукции магнитного поля?

3. Какова картина линий индукции магнитного поля прямолинейного проводника с током? Кругового витка с током? Катушки с током? Как определяют направление линий индукции магнитного поля?

4. Какие поля называют вихревыми?

5. В чём отличие магнитного поля от электростатического?

6. Какое магнитное поле называют однородным?

Примеры решения задач

Пример 1. Электроны, образующие «электронный луч», движутся так, как изображено на рисунке 157, а. Определите направление линий индукции магнитного поля, создаваемого этими электронами.

Решение. Определить направление линий индукции магнитного поля, создаваемого движущимися электронами, можно как по правилу буравчика, так и по правилу правой руки. Однако следует помнить, что эти правила сформулированы для движущихся положительных зарядов. Поэтому в данном случае надо учесть, что за направление электрического тока принято направление, противоположное движению электронов. Тогда, если смотреть на линию индукции по направлению движения электронов, она будет сориентирована против направления движения часовой стрелки (рис. 157, б).

Пример 2. На рисунке 158 указано направление электрического тока в соленоиде. Определите магнитные полюсы соленоида.

Решение. Для определения магнитных полюсов соленоида можно воспользоваться как правилом буравчика, так и правилом часовой стрелки. В первом случае будем мысленно вращать буравчик по направлению тока в витках соленоида. Остриё буравчика при этом перемещается вдоль оси соленоида от торца А к торцу В. Так как линии индукции внутри магнита направлены от южного полюса к его северному полюсу, то по аналогии можно сделать вывод, что у торца А — южный полюс соленоида, а у торца В — северный.

Проверим свой вывод, применив правило часовой стрелки. Если смотреть со стороны торца А соленоида, то видно, что направление тока в витке совпадает с направлением движения часовой стрелки. Следовательно, у торца А — южный полюс, а у торца В — северный.

Упражнение 20

1. Как направлены линии индукции магнитного поля, создаваемого прямолинейным проводником с током, изображённые на рисунке 159, а. В каком направлении проходит электрический ток в проводнике, изображённом на рисунке 159, б?

2. Как поведёт себя магнитная стрелка, если рядом с ней расположить прямолинейный проводник с электрическим током (рис. 160)?

3. По круговому витку проходит электрический ток (рис. 161). Как расположится магнитная стрелка, если её поместить в центр витка? Действие магнитного поля Земли не учитывать.

4. Как будут взаимодействовать две катушки, подвешенные на тонких проводах, если их подключить к источникам тока так, как изображено на рисунке 162?

5. При подключении соленоида к полюсам источника тока он отталкивается от расположенного вблизи постоянного магнита (рис. 163). В каком направлении идёт ток в соленоиде?