§ 22-1. Проводники в электростатическом поле
Сайт: | Профильное обучение |
Курс: | Физика. 10 класс |
Книга: | § 22-1. Проводники в электростатическом поле |
Напечатано:: | Гость |
Дата: | Среда, 4 Декабрь 2024, 12:03 |
Мы уже обсуждали сходство и различие гравитационного и электростатического взаимодействий. Следует отметить ещё одно их существенное различие. От сил тяготения нельзя защититься. Нет такого убежища, в котором бы силы тяготения не действовали. А вот получить надёжную защиту от электростатических сил вполне возможно. Такую защиту может обеспечить любой проводник. Так какие же свойства проводников позволяют использовать их для электростатической защиты?
Проводники в электростатическом поле. В металлах свободными заряженными частицами являются электроны. Это происходит потому, что электроны, находящиеся на внешних оболочках атомов, утрачивают связи со своими атомами и могут относительно свободно передвигаться по всему объёму металла.
Выясним, что происходит в однородном металлическом проводнике, если его внести в электростатическое поле. Для этого поместим металлический проводник А в электростатическое поле, созданное двумя заряженными пластинами В и С (рис. 118.2). Напряжённость этого поля направлена от положительно заряженной пластины В к отрицательно заряженной пластине С. Под действием электрических сил свободные электроны наряду с непрекращающимся тепловым движением начнут двигаться упорядоченно. Они будут накапливаться слева у поверхности проводника А, создавая там избыточный отрицательный заряд. Недостаток электронов на правой стороне проводника приведёт к возникновению на ней избыточного положительного заряда.
Перераспределившиеся заряды создают собственное электрическое поле . Линии напряжённости этого поля в проводнике направлены в сторону, противоположную линиям напряжённости внешнего поля . Упорядоченное перемещение свободных электронов в проводнике прекратится, если собственное поле скомпенсирует внешнее . В этом случае напряжённость результирующего поля внутри проводника станет равной нулю, т. е. электростатическое поле в проводнике исчезнет.
Следовательно, электростатическое поле внутри проводника отсутствует. Таким образом, проводник — одна из моделей, используемых в электростатике, описывающая однородное тело, внутри которого напряжённость электростатического поля равна нулю.
Суммарный заряд любой внутренней области проводника равен нулю и не влияет на распределение зарядов на его поверхности и на напряжённость поля внутри проводника. На этом свойстве проводников основана электростатическая защита. Чтобы защитить чувствительные к электрическому полю приборы, их помещают внутрь заземлённых полых проводников со сплошными или сетчатыми стенками. Чаще, однако, экранируют не приборы, а сам источник электрического поля, от нежелательного воздействия которого необходимо защитить расположенные поблизости устройства.
На рисунке 118.3 представлено поперечное сечение полой проводящей призмы. Призма заряжена отрицательно. В какой области (областях) — А, В или С — напряжённость электростатического поля не равна нулю?
Следствием того, что напряжённость электростатического поля внутри однородного проводника равна нулю, является то, что потенциал всех точек проводника одинаков. В самом деле, если напряжённость поля равна нулю, то разность потенциалов между любыми двумя точками проводника равна нулю. Поэтому можно оперировать потенциалом проводника, не указывая конкретную точку, в которой он определён.
Электростатическая индукция. В соответствии с законом сохранения электрического заряда модули избыточных зарядов, возникающих на противоположных поверхностях первоначально незаряженного проводника при внесении его в электростатическое поле, должны быть одинаковыми. Проверим это на опыте.
Закрепим на непроводящих стержнях два плотно соприкасающихся металлических цилиндра А и В с прикреплёнными к ним листочками тонкой бумаги. Внесём цилиндры в электростатическое поле положительно заряженного шара (рис. 118.4, а). Листочки бумаги разойдутся, что свидетельствует о появлении зарядов на цилиндрах. Свободные электроны под действием поля, создаваемого зарядом шара, переместятся с цилиндра В на цилиндр А, зарядив его отрицательно. Цилиндр В из-за недостатка электронов станет положительно заряженным.
Электростатическая индукция, или электризация через влияние, — явление, при котором на поверхности проводника (в данном случае на поверхности соединённых цилиндров), помещённого в электростатическое поле, появляются электрические заряды. Электрические заряды, возникающие в результате электростатической индукции, называют индуцированными.
Если заряженный шар убрать, то угол расхождения листочков бумаги уменьшится до нуля. Это можно объяснить тем, что в отсутствие электростатического поля, создаваемого зарядом шара, электроны равномерно распределяются по всему объёму обоих цилиндров.
При разъединении цилиндров в поле заряженного шара на них окажутся противоположные по знаку заряды (рис. 118.4, б), модули которых равны. Эти заряды сохранятся и в том случае, если заряженный шар, создающий поле, убрать (рис. 118.4, в). Только в этом случае заряды будут у соседних оснований цилиндров. В том, что модули зарядов обоих цилиндров равны, можно убедиться, соединив их (рис. 118.4, г): угол между листочками равен нулю.
На двух шёлковых неокрашенных нитях подвешены две металлические незаряженные гильзы. Будут ли взаимодействовать гильзы, если одну из них зарядить? Если да, то как: притягиваться или отталкиваться?
Распределение зарядов в проводнике. Выясним, как распределяются заряды в наэлектризованном проводнике. Проведём опыт. Сообщим проводнику электрический заряд. Маленьким шариком на изолирующей ручке будем касаться различных точек на внешней поверхности заряженного полого металлического шара, а затем электрометра (рис. 118.5, а). Отмечая каждый раз угол отклонения стрелки электрометра, можно убедиться, что на внешней поверхности шара заряд распределяется равномерно. Если же коснуться маленьким шариком внутренней поверхности заряженного полого шара, а затем электрометра, то стрелка электрометра не отклонится (рис. 118.5, б). Следовательно, на внутренней поверхности шара избыточного заряда нет, т. е. заряды, сообщённые проводнику, располагаются на его внешней поверхности.
Интересно знать
Зарядим проводник стреловидной формы положительным зарядом. Наибольший заряд, приходящийся на небольшие одинаковой площади участки поверхности, находится на выпуклостях проводника, особенно на остриях. На рисунке 118.6 штриховой линией для наглядности изображено распределение модуля напряжённости поля у поверхности заряженного проводника стреловидной формы. Напряжённость электростатического поля вблизи острых выступов заряженного проводника может оказаться настолько большой, что начнётся ионизация молекул газов, входящих в состав воздуха, в результате которой появятся положительные и отрицательные ионы и электроны. Заряженные частицы с тем же знаком заряда, что и на острие, движутся от него, увлекая нейтральные молекулы. Вследствие этого возникает направленное движение воздуха у острия, или, как говорят, электрический ветер. Его можно обнаружить, если поднести к острию зажжённую свечу: её пламя отклонится в сторону от острия и может быть даже погашено.
Явление стекания зарядов с заострённых проводников приходится учитывать в технике. Для предотвращения стекания зарядов у всех приборов и механизмов, используемых в высоковольтных системах, металлические части делают закруглёнными, а концы металлических стержней снабжают гладкими наконечниками.
1. Что происходит в однородном металлическом проводнике при внесении его в электростатическое поле?
2. На каком свойстве проводников основана электростатическая защита?
3. В чём состоит явление электростатической индукции?
4. Объясните опыты с двумя металлическими цилиндрами, помещёнными в электростатическое поле (см. рис. 118.4, а, б, в, г).
5. Чему равна сила, действующая на точечный заряд, если его поместить в центр равномерно заряженной сферы? в любую другую точку внутри этой сферы?