Печатать эту главуПечатать эту главу

§ 9. Состояние электрона в атоме

Рис. 15. Плёнка, состоящая из наночастиц Au и SnO<sub>2</sub>:<br /><i>а</i> — изображение, <i>б</i> — дифракционная картина.<br />Фотографии получены методами, основанными<br />на использовании волновых свойств электронов
Рис. 15. Плёнка, состоящая из наночастиц Au и SnO2:
а — изображение, б — дифракционная картина.
Фотографии получены методами, основанными
на использовании волновых свойств электронов

Развитие квантовой механики в 20-х годах ХХ века привело к коренному пересмотру фундаментальных понятий теории строения атома. Исследование свойств электрона показало, что ему присущи свойства как частицы, так и волны. Электрон как частица характеризуется массой и электрическим зарядом, как волна — длиной волны, которая зависит от скорости движения электрона. Эту двойственность свойств электрона назвали корпускулярно-волновым дуализмом.

В настоящее время волновые свойства электрона используются в электронной и атомно-силовой микроскопии, позволяющей рассматривать различные объекты (размером порядка 10–9 м) с увеличением в сотни тысяч раз (рис. 15). Без этих методов было бы невозможным появление нанотехнологий.

Рис. 16. Электронное облако атома водорода
Рис. 16.
Электронное
облако атома
водорода

С точки зрения квантовой механики для электрона нельзя одновременно точно определить его координату и скорость, а следовательно, невозможно проследить траекторию движения электрона в атоме, поэтому говорят о вероятности нахождения электрона в определённой области пространства около ядра. Её ограничивают условной поверхностью, охватывающей примерно 90 % объёма, в котором наиболее велика вероятность нахождения данного электрона (рис. 16). Такую область околоядерного пространства называют атомной электронной орбиталью, или просто атомной орбиталью.

Каждому электрону в атоме соответствует своя атомная орбиталь, которая характеризуется определёнными значениями энергии, формой и размером электронного облака.

За условный размер атомной s-орбитали принимают диаметр облака, в котором вероятность нахождения данного электрона составляет примерно 90 % (см. пунктирную линию на рис. 16).

По форме электронного облака различают s-, p-, d- и f-орбитали. s-Орбитали имеют форму сферы, р — форму гантели, d и f — более сложную форму (рис. 17).

Рис. 17. Форма электронных облаков <i>s</i>-, <i>p</i>-орбиталей (верхняя строка) и <i>d</i>-орбиталей (нижняя строка)
Рис. 17. Форма электронных облаков s-, p-орбиталей (верхняя строка)
и d-орбиталей (нижняя строка)
Рис. 18. Схема распределения атомных орбиталей по энергии (энергетическая диаграмма)
Рис. 18. Схема распределения
атомных орбиталей по энергии
(энергетическая диаграмма)

Согласно основному принципу квантовой механики, электрон в атоме может принимать только определённые значения энергии, а другие значения запрещены. В этом случае говорят, что энергия электрона квантована, то есть имеет дискретный набор значений. Для наглядного представления состояний электронов в атоме используют энергетическую диаграмму (рис. 18). Проанализируем этот рисунок. Из рисунка следует, что электроны в атоме распределены по энергетическим уровням и подуровням.

Энергетические уровни (или электронные слои, с которыми вы ознакомились, изучая химию в 9-м классе) обозначают числом n. Это число имеет только целочисленные значения: 1, 2, 3, … Каждому значению n соответствует определённое значение энергии электрона. Энергия может изменяться только скачкообразно. Самый низкий энергетический уровень (n = 1) соответствует минимально возможной энергии электрона. Находящиеся на этом уровне электроны наиболее сильно связаны с ядром. Чем больше n, слабее его связь с ядром, больше размер электронного облака, тем больше энергия электрона. При n = ∞ электрон теряет связь с ядром и считается свободным.

Вам уже известно, что число электронов на энергетических уровнях различно. Так, на первом энергетическом уровне может быть не более 2, на втором — не более 8, на третьем — не более 18 электронов.

Число электронов, которое может вместить определённый уровень, можно вычислить по формуле:

N(e) = 2n2.

Электроны, находящиеся на одном энергетическом уровне, образуют электронную оболочку, или слой. Высшую по энергии электронную оболочку называют внешней. На ней расположены электроны, которые слабее всего связаны с ядром и поэтому способны участвовать в образовании химических связей. Их называют валентными.

В многоэлектронных атомах энергетические уровни расщепляются на энергетические подуровни (табл. 5). На первом уровне (n = 1) есть только один подуровень — 1s, на втором (n = 2) — два подуровня (2s и 2p), на третьем — их три (3s, 3p и 3d).

Таблица 5. Распределение электронов в атоме по уровням, подуровням, орбиталям

Энергетический уровень, n Подуровень Число атомных орбиталей Максимальное число электронов на подуровне Максимальное число электронов на энергетическом уровне
(N(e) = 2n2)
1 1s 1 2 2
2

2s

2p

1

3

2

6

8
3

3s

3p

3d

1

3

5

2

6

10

18